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A program for the analytic evaluation of some parametric integrals which occur in 
fourth order QED calculations is described. 

1. INTRODUCTION 

It has been recognized for some time that the precise computations of the 
fundamental quantities which appear in quantum electrodynamics such as the 
Lamb shift and anomalous magnetic moment require far more accurate evaluation 
of the integrals which arise in their calculation than is possible with current 
numerical techniques. Clearly the ideal way of computing these integrals is to 
evaluate them exactly by analytic means. In this paper we consider one approach 
to this problem in which such integrals are evaluated exactly by computer. Until 
quite recently, this was not believed possible for integrals with the complexity 
which one finds in such calculations except by heuristic means which do not 
always guarantee a solution to the problem [I, 21. However, in 1968 it was shown 
by Risch [3] that a procedure existed which would provide for the algorithmic 
evaluation of integrals of expressions involving a much wider class of functions 
than had been considered by such means previously. In particular, Moses [4] 
showed that a decision procedure existed for the indefinite integration of expres- 
sions involving Spence functions. This method will apply as a special case to the 
evaluation of integrals of expressions of the form 
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where R(x) is a rational function of x and 

L(x) = j-’ L-,(t)l(t - 1) dt, 
1 

L,(t) = (t - 1)/t 

defines the Spence functions. It then determines the integral of such expressions 
analytically provided that the integral is still an expression of the same form as 
Eq. (1). To integrate such expressions we begin by expanding R(x) into a sum of 
partial fractions. If the partial fraction denominators are linear, the resulting 
sum can then be integrated term by term using Eq. (2). However, if denominators 
of higher order occur, then the resulting integrals will no longer be Spence functions 
with simple rational arguments and therefore not transformable into the same 
form as Eq. (1). Further integration of such functions would then be extremely 
difficult in general. Such results can be applied immediately to the consideration 
of all relevant definite integrals which arise in computing some fourth order vertex 
diagrams in quantum electrodynamics, which were shown by Karplus and Kroll [5] 
to be classifiable in terms of five indices. Specifically, such integrals take the 
form [6]: 

I(k, m, 11, r, s) = S’ dy S’ dx S’ dw J’ dz Zrwsx2k+~~~~k~n-2Am (3) 
0 0 0 0 

where 
j3 = 1 - xy(1 - WZ(1 - WZ)), 
A = 1 - x(1 - wz(l - w)), 
r = w2xa + yA2. (4) 

The important point about these functions is that it is possible to carry through 
the integrations in such a way that the denominators which result after any given 
integration can always be expressed in terms of linear factors with respect to the 
next variable of integration, and hence by the above method we can arrive at a 
final result in terms of a few particular Spence functions. 

The results of each integration are found by appropriate substitutions of the 
end point values into the indefinite forms which remain after the partial fraction 
expansions. A further difficulty can now arise because of singularities introduced 
in the definite integrals by end point divergences. These are handled in the present 
case by a standard regularization procedure as discussed in Section 4. 

In this paper we describe a program which has been developed in REDUCE [6] 
for the analytic evaluation of all such integrals. This is not however the first 
such program for doing this; a pioneering effort in this direction was that of 
Peterman [7] who developed a program written in SCHOONSCHIP [S] for evalu- 
ating this class of integrals. Our particular program in fact draws heavily on 
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Peterman’s methods. However, his published program uses previously computed 
tables of integrals for the evaluation of many of the forms encountered. This in 
fact limits the use of the program to those particular parameter values accom- 
modated by the tables. Peterman’s table is however complete enough to consider 
all integrals one would normally meet in physical calculations. Our approach, 
on the other hand, involves the use of algorithmic procedures for single 
dimensional integral evaluation which apply to a much wider range of parameters 
than considered by Peterman’s tables and uses only a few tabulated constants for 
its evaluation. We have followed this alternative approach because we believe 
that the extension of these ideas to higher orders of quantum electrodynamics or 
to other fields will be more easily accomplished by this approach than by table 
lookup. We shall say more about the problem of higher order integral evaluation 
later. 

The outline of this paper is as follows. In Section 2 we show why the integrals 
which occur in some fourth-order vertex graphs may be represented in the form 
of Eq. (3). Next, the actual integration procedure is discussed in terms of the 
generalized polylogarithms of Nielsen [7, 9, lo] which turn out to be more con- 
venient for our purposes than the Spence functions. In Section 4, we discuss the 
form of the program which we have developed, and we conclude finally with 
some remarks on the extension of these ideas to higher orders of QED. The 
actual program for doing the integrals is given in Appendices A and B, with 
various examples. 

2. FORM OF THE INTEGRALS 

Expressions of the form Z(k, m, n, r, s) are found to contribute to many fourth 
order processes in QED. In particular, the fourth order ladder contributions to 
the anomalous magnetic moment of the electron may be expressed completely 
as a sum of such terms. To illustrate this, we shall consider the evaluation of the 
crossed ladder vertex diagram in Fig. 1. We have chosen this example because it 
is irreducible and therefore the hardest to compute by standard methods. The 
unrenormalized amplitude corresponding to this diagram is, according to the 
usual Feynman rules: 

-ieU (p + 4) .I?24 (p - g,) 

’ r”(pl + m, you (p - ;) k12 !e X2 k,2 : A2 zb pi2 : ,,,2 3 c5) 
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FIG. 1. Fourth order crossed ladder vertex graph in QED. 

where 

Pl = P - ; - kl , 

Pn=p-;-kl-kk,, 

PS = P + 4 - k, - k2, 

~4 =P f ; - k,. 

One way to evaluate the integral in Eq. (5) relies on combining its six denominators 
into parametric form using 

1 
abcdef 

5!s;duJ;zdzJ; w2 dw J; x3 dx J; y4 dy 
=[(~-b)~z~x~+(b-c)z~x~+(~-d)~x~+(d-e)x~+(e-~f~+f~~~ 

where 
(7) 

a = ps2 - m2 

b = pZ2 - m2,’ 

c = pIa - ma, 

d = k12 - h2, 

e = pa2 - m2, 

f = kZa - h2. 

(8) 
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This formula is a special case of the more general relation 

(9) 

Before the parametric integrals can be evaluated, the integrations over the 
internal photon momenta must be carried out. To facilitate this, the denominator 
of Eq. (7) must be diagonalized with respect to k, and k, ; in other words it must 
be brought into quadratic form in these variables so that no terms of the form 
k, * k, , k, * p, k, * p, etc. remain. The transformation which effects this diagonaliza- 
tion is 

k, = kl’ - wzk,’ + c,q + cZp, 
(10) 

k, = kz' + c,q + ~4~3 

where 
Cl = -w/2 + 24wz - WZC3) 

c2 = w - wyzA//$ 

~3 = $vAlP - ~5, 
~4 = ~44 
cg = wxyz(1 - w - U(l - WZ))@, 

(11) 

The denominator in Eq. (7) then becomes 

(xyk? + ,W2 - rrm21P + cd2 + w216, 
where 

(12) 

c,=wxy-xyfy-I, 

c, = uw2xyz( 1 - UZ) + y(l - x + UWXZ(1 - wz)) cg . 
(13) 

The integrations over the photon momenta are now straightforward. 
For our present purposes, we Iimit ourselves to integrals in which A -+ 0 and 

q2 = 0. Letting the photon mass h approach 0 restricts us to considering only 
infrared convergent integrals. By investigating integrals in which q2 = 0 we can 
evaluate the Lamb shift and the anomalous magnetic moment since both are 
proportional to quantities evaluated at zero momentum transfer. When both A2 
and q2 are removed from Eq. (12), the integrals simplify greatly and consequently 
the integration over the variable u is straightforward. All contributions to the 
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matrix elements in Eq. (5) are then found to be a sum of integrals of the form: 

Z(k, m, n, r, s) = 6 ws dw lo1 zr dz 1’ ~2k+n-~-3A~ dx 
0 

X 
s : (1 - x3;:;;; + x,y)" dyy (14) 

where 
x, = w2x 7 
x2 = A2 - w2x2(1 - wz(l - wz)), (15) 
x3 = x(1 - wz(1 - WZ)) 

in agreement with Eq. (3). 
In Eq. (14) the original denominator has been factored into two terms each of 

which is linear in y. One could now use standard partial fraction techniques to 
carry out the x and y integrations. A more efficient method results for our calcula- 
tion, however, by the observation that all denominator combinations possible 
for Eq. (14) when n and k are both greater than zero can be obtained by suitable 
differentiation with respect to B and C of the following trivial integral: 

(-I)"-1 an-1 ak-1 1 

= (n -! l)! (k - l)! acn-lw 0 (1 - C,;lia + By) s 
(-I)"-1 an-1 ak-1 

= (n -! l)! (k - I)! @=-(A&+ B)lnA;ll+:)’ 

(16) 

Further, when the expressions for A + B and A(1 - C) are evaluated they factor 
into pieces which are linear in x. The x integration can then also be carried out 
with the help of a generating function and yields combinations of rational functions 
and logarithms in the variables w and z. These functions depend on the parameters 
k, m, n and thus we can write 

I@, m, n, r, s) = s1 zT dz j1 w* dw SZ(k, m, n), 
0 0 

(17) 

where 

SZ(k, m, n) = s,’ x2k+n-m-3Am dx Jo1 (1 _ x3iyLi: + X2Y)K (18) 

is no longer a function of x and y. 
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3. INTEGRATION OVER X AND Y USING SUBTRACTED NIELSEN FUNCTIONS 

The evaluation of the various Sl(k, m, n) can be performed most efficiently 
within the framework of the so-called subtracted Nielsen functions [7, 9, lo]. 
Ordinary Nielsen functions are defined by their expansion for real x and 1 x 1 < 1: 

(- l)n+p-l 
sdx) = (a - l)!p! s 

l Inn-l t lnJ(1 - xt) dt 
o 

where the coefficients St:” are the well known Stirling numbers of the first kind, 
defined by the factorial polynomials 

or by 

hP(1 3-x) =p! 2 Stj’)+f. (21) 
i=p 

The mth subtracted Nielsen function is defined by 

s,“(x) = f (-l)m-@+i s&$xi 
1E.D ice (m + i)! (m + V’ (22) 

and is formed from S,,,(x) by subtracting off the first m - p terms and dividing 
the result by xm, viz. 

where 
m--9-1 (-1)” stzix)ix”+i 

K@(x) = *; (p + i)! (p + i)” . 

The first term surviving in this subtraction procedure is 

(23) 

(24) 

& 
[ 
(-l)+” st$xm 

m! mn 1 
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so that Eq. (23) can be written in the form of Eq. (22). Finally, the generalized 
subtracted Nielsen function is defined by 

(25) 

These functions are particularly useful for two reasons. First, as will be seen 
shortly, they provide a compact representation for the SZ(k, m, n) and secondly 
they possess straightforward integration properties. 

Of particular interest in the present calculation are the forms S,n:,3”, or subtracted 
logarithms, defined by 

m (- l)“-l+” st$p 
-Sl,(x) = SC;” = 1 

i=O (n + i)! 
(26) 

Recognizing that St$ = (-1)’ i!, this gives us 

(27) 

or 

Wx) = $ Dn(l - xl + qP(x>l, 

where 
n-1 

9@‘(x) = z1 f . 

(28) 

(29) 

Also of interest are the subtracted dilogarithms 

Sd,(x) = s:;n = f [G,(x) - &“(x)]. (30) 

The integration properties which make these subtracted polylogarithms so 
useful are 

I ,’ 4 yrn-Wdx~) = W,(x) - %W/(~ - 4, (31) 
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which follows readily from the definition Eq. (28) and 

I o1 dy y”-?%&(xy) = [S&(x) - 5y,y(x)]/(n - m). (32) 

In general the second integral is not very useful except in particular cases. For 
example, when m = 1 and x = 1, 

n+l+iSt(l), 

sE(l) = ,z ii:’ i) ! (i 4;“) = it (n + it(i + 1) = -& $; f * (33) 

Armed with this basic information about the subtracted polylogarithms it is now 
possible to see how they provide a compact representation for the Sl(k, m, n). 
What one does is to expand all rational functions and rational coefficients of 
logarithms by partial fractions. One then expresses all such functions as far as 
possible in terms of subtracted logarithms, eg, 

--& ln(l - wz) = z”S/,(wz) - w-~&~(wz). (34) 

When the w integration is completed, one is left with rational functions of z’ 
subtracted logarithms in z and perhaps some dilogarithms. These functions are 
again expanded using partial fractions, and finally the integration over z is carried 
out, completing the required evaluation. 

4. STRUCTURE OF THE PROGRAM 

The program RSIN, which is given in Appendix A, is set up as follows. The 
first section contains definitions of frequently used algebraic procedures. Next 
are the rules necessary to do the x and y integration. Fortunately, as we mentioned 
earlier, all of the y and most of the x integrals can be done by suitably differen- 
tiating two generating functions. These functions are 

s f (1 dv - 4)(1 - BY) - & (In(1 - B) - ln(l - A)) (35) 

and 

(1 - Dx)(l "21x)(1 - C,x) 

= (cl A c,) (D 1 cl) Ml - Cl) - W - D)) 

- (cl L c,) (D 1 c,) (Ml - Cd - ln(l - W (36) 
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Next the rules needed to perform the integrals over w and z are given. These 
are more complicated in that rules for integrating elementary functions, logarithms, 
subtracted logarithms and dilogarithms are required. 

An important feature of these integration rules is the regularization procedure 
we have adopted. All integrals handled by this program are globally finite, but 
because of the way they are split up, isolated singularities in the variables w and z 
can appear. These are of the form Ji &v/V, $ dw/(l - w)“, J: dz/(2z - 1)” and 
Jt In z/z” dz. Such singularities are always compensated however by an equal 
and opposite term in another piece of the integral. For example, with a term like 
C Ji dw/w” there will always be a term -C ji dw/(l - w)“. Thus one has a choice 
to make; namely whether or not to retain these singular terms until the end of the 
calculation or throw them away as they arise. Like Peterman [6], we opt for the 
latter method in this paper. Thus the procedures for integrating such obviously 
divergent functions as Jt Liz(z)/zn dz are set up to return the Hadamard finite 
part (HFP) of such integrals. The method of extracting the HFP is unique, as we 
shall illustrate by considering the above integral. Since 

Li,(z) = f ;, 
i=l 

(37) 

this integral diverges for all n < - 1. It is obvious that for finite IZ there are a 
finite number of singular terms in the integrand; in fact precisely n - 1 of them 
as given by 

n-1 
-g Zi-n = Z1-n + z2-n + z3-n + . . . + Z(n-l)-ne (38) 

The Hadamard finite part is therefore found by subtracting these n - 1 terms 
from the original integrand. Thus 

b%(z) - c::i zk/k2) dz = ’ sd,(z) dz.. 
ZS s 

(39) 
0 

This example also illustrates the obvious connection between the HFP’s and 
subtracted polylogarithms. 

A program which computes the Hadamard finite parts is contained in Appen- 
dix B, with some examples. This program, called ZINT, is a subprogram of RSIN. 

After the integration rules have been tabulated the procedure RSIN is defined. 
RSIN is a function of four variables FN, k, m and n. The variables are chosen 
to reflect the fact that all integrals have the structure 

FN*SI(k, m, n) 
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where FN is polynomial in w and z and SZ(k, m, n) is as defined earlier in Eq. (18). 
The fundamental thrust of the procedure is to take the integrand specified by 
FN, k, m, n, expand it using elementary partial fraction decomposition rules and 
then recombine it as soon as possible into combinations of logarithms, rational 
functions and subtracted Nielsen functions, which are fed through the integration 
sequence. 

In order to keep the integral table as small as possible, we make use of the fact 
that the integrals over w and z are invariant under the reflections w f-) 1 - w 
and zf-) 1 - z respectively. This optimization may be seen at various points in 
the definition of RSIN. 

The integration tables provided are sufficient for the complete evaluation of 
any integral of the form given in Eq. (3). However, in order to allow for the use 
of the tables in the computation of integrals outside the range of the parameters 
defined by Eq. (3), (for example, a more general exponent for x in the integrand 
numerator) the table provides answers in these cases in terms of undefined integrals 
INTl, INT2 and INT3. The explicit forms for these integrals would have to be 
added to the table if integration of such functions was required, but this is straight- 
forward. 

Because of the dependence of the program on pattern matching for performing 
many of the operations involved, especially partial fraction decompositions, the 
program is not as efficient as one written specifically for such calculations. How- 
ever, the times taken for the examples in Appendix A are not unreasonable con- 
sidering that only a modest number of such integrations would be performed in 
any given physical calculation. The actual times in seconds for these examples for 
execution on the USC-IS1 PDP-10 using 70K words of 1~ set core are given in 
Table I. These times should be improved dramatically when a partial fraction 
package is made available in REDUCE in the near future. 

TABLE I 

Times in Sec. for Computing Various Z(k, m, n, r, s) on USC-IS1 PDP-10 in 70K Words 

k m n r s Time 

1 0 1 1 2 18.5 

1 1 2 1 3 51.2 

1 1 3 1 3 82.2 

1 1 3 1 2 73.1 

1 0 2 2 3 49.2 
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5. CONCLUSION 

The methods which we have considered in this paper for analytic integration 
could clearly be applied to a wider range of problems than are considered here. 
Moreover, the Risch method as expounded by Moses [4] would provide for the 
evaluation of integrals in which the Spence functions were themselves parameters 
in the rational part such as: 

s x/(x - 1) dx* x + L(x) 
However, such integrals rarely arise in quantum electrodynamics although they 
may occur in other fields. What happens more frequently is that the partial fraction 
denominators cannot be factored into linear factors and hence it is necessary to 
introduce Spence functions with irrational arguments or a new class of functions 
to complete the analytic integration over one variable. A further analytic integra- 
tion of such expressions would involve different methods from those we have 
considered here. In extending our ideas to sixth order QED calculations, for 
instance, it is not clear at present whether answers will come out only in terms of 
Spence functions. However, all reported analytic evaluation of contributions to 
the sixth order anomalous magnetic moment have so far been of this form [ 11,121. 
In particular, the recent work of Levine and Roskies [12] bears out this conjecture. 
Their method uses an inspired technique for transforming the integrals, but relies 
eventually on a partial fraction expansion similar to the one we have discussed in 
this paper for getting the required answer. It would of course be tempting to 
guess that the whole sixth order magnetic moment is expressible only in terms of 
Spence functions, but this remains to be proven. 
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